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The COVID-19 pandemic has dramatically transformed human mobility patterns. Therefore, human mobility
prediction for the “new normal" is crucial to infrastructure redesign, emergency management, and urban
planning post the pandemic. This paper aims to predict people’s number of visits to various locations in
New York City using COVID and mobility data in the past two years. To quantitatively model the impact of
COVID cases on human mobility patterns and predict mobility patterns across the pandemic period, this paper
develops a model CCAAT-GCN (Cross- and Context-Attention based Spatial-Temporal Graph Convolutional
Networks). The proposed model is validated using SafeGraph data in New York City from August 2020 to
April 2022. A rich set of baselines are performed to demonstrate the performance of our proposed model.
Results demonstrate the superior performance of our proposed method. Also, the attention matrix learned
by our model exhibits a strong alignment with the COVID-19 situation and the points of interest within the
geographic region. This alignment suggests that the model effectively captures the intricate relationships
between COVID-19 case rates and human mobility patterns. The developed model and findings can offer
insights into the mobility pattern prediction for future disruptive events and pandemics, so as to assist with
emergency preparedness for planners, decision-makers and policymakers.
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1 INTRODUCTION
The COVID-19 pandemic has dramatically transformed human mobility patterns, including the
type of visited locations, check-in time of locations, and preference over origin-destination dis-
tances [16]. Such a trend consequently induces a shift in travel mode choice, like the rising trend
in telecommuting [18] and constantly lower subway ridership [33]. Therefore, human mobility
prediction for the “new normal" is crucial to infrastructure redesign, emergency management, and
urban planning post the pandemic.

How do we predict a nonstationary spatiotemporal pattern, given that the “new" normal demon-
strates a quite different pattern from the “old" normal? To tackle such a challenge, we need to rely
on nonstationary features such as COVID cases. This paper aims to predict people’s number of
visits to various locations in New York City using various data in the past two years. The developed
model and findings can offer insights into the mobility pattern prediction for future disruptive
events and pandemics, which will in turn assist with emergency preparedness for transportation
planners, decision-makers and policymakers.

Some studies on COVID-19 focus on predicting the evolution of the pandemic without accounting
for the underlying mobility patterns [4, 30, 35, 38, 39]. However, pandemic evolution and human
mobility are highly correlated. A majority of studies have examined the impact of human mobility
on the pandemic case number. Reversely, COVID cases also affect people’s travel desire, thus
impacting overall visitation frequencies to various places. Statistical analysis accompanied by data
visualization [40] demonstrates strong evidence for the impact of COVID cases on mobility. For
example, the impact of COVID-19 on human mobility patterns is analyzed in New York City using
statistical analysis and spatial visualization [15]. Comparing the number of visits in 2019 and 2020,
this study finds that there is a strong correlation between the number of visits and the trend of
the newly reported COVID-19 cases. It finds that most locations have the lowest numbers of visits
in the first half of April 2020, when COVID-19 explodes. [17] uses Twitter data to analyze the
change of human mobility patterns during COVID-19 in New York City. A general decreasing trend
is observed in the Twitter user activity after mid-March, while hospitals witnesses a significant
increase of Twitter users after mid-March. [36] analyzes anonymized mobile phone data for six
states in the United States and measures the individual daily traveling distance. It detects daily
travel distance drops across all six states in March 2020, with New York falling from 5.2 km on
March 2 to only 31 meters on March 23. [5] leverage users’ check-in data (i.e., geo-location check-in
information) obtained from Twitter to study the trend of travel patterns post the pandemic in New
York City. It finds that users’ gyration decreases by 35% after the stay-at-home order. [6] utilizes
individual tweets and user demographics to study people’s attitudes toward different travel modes
during the pandemic, shown to be consistent with the changes in the ridership of each travel mode.

The aforementioned studies primarily use statistical analysis to investigate the COVID-19 impact
on human mobility. However, little research has been done to quantitatively model the influence
of COVID-19 cases on human mobility patterns. A quantitative model is essential for simulating
different scenarios and assessing the potential pandemic impact on human mobility patterns.
This allows for the exploration of various hypothetical situations, enabling researchers to project
potential pandemic challenges and develop strategies for similar situations in the future [3].
To quantitatively model the impact of COVID cases on human mobility patterns and predict

mobility patterns in time and space, this paper develops a deep learning model, namely, Cross-
and Context-Aware Attention based Spatial-Temporal Graph Convolutional Networks (CCAAT-
GCN). Graph convolutional networks (GCN) capture the spatial evolution of the number of visits
to each location. Attention mechanism, including temporal and spatial attention, aims to model
the intricate relationships and patterns in the data. Temporal attention captures the temporal
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dependencies and variations over time, while spatial attention captures the spatial interactions and
dependencies among different locations. Building upon the GCN framework, the cross-attention
module specifically models the correlation between COVID-19 cases and the number of visits,
allowing for a comprehensive understanding of their mutual influence. Moreover, the context-
attention module learns to incorporate relevant contextual features, such as regional demographics
or socioeconomic factors, to enhance the prediction accuracy and interpretability of the model. The
proposed model is validated using SafeGraph data1 in New York City from August 2020 to April
2022.

The rest of this paper is organized as follows. Section 2 presents the related work and highlights
our contributions. Section 3 provides the problem statement. Section 4 fleshes out the framework
of our proposed CCAAT-GCN. Section 5 introduces the COVID-19 and mobility datasets. Section 6
details the experiments and presents the results. Section. 7 concludes our work and projects future
research directions.

2 RELATEDWORK
In this section, we first introduce the approaches developed for humanmobility prediction, including
the time-series methods, Markov-based methods, deep-learning based methods, and graph neural
networks. Then, we will point out the limitations of existing studies and identify research gaps.
The contribution of this paper will be highlighted thereafter.

2.1 Time-series methods.
The time-series method is a statistical technique that is commonly used to analyze and model
data that is collected over a period of time. This method involves examining and interpreting the
patterns and trends present in the data to make forecasts and predictions about future values.
These methods include Autogressive (AR), Moving Average (MA), and Autogressive Integrated
Moving Average (ARIMA) [24]. In [8], a multivariate nonlinear time series model is used to predict
social interactions. In [22], an improved ARIMA-based method is proposed to predict the human
mobility in the hotspots. The improved ARIMA combines ARIMA with a prior distribution of the
passenger’s locations, achieving better prediction accuracy than the original ARIMA. In [34], a
time-series based method that uses Gibbs sampling is proposed to predict future human locations.
[19] proposes to use a seasonal ARIMA model to predict human mobility.

2.2 Markov-based methods
Markov-based methods are a type of probabilistic model that predicts the future states of a system
based on its current state. This kind of method assumes that the probability of moving from one
state to another depends only on the current state and not on any of the previous states. [27] applies
Markov predictors to predict the next location with extensive Wi-Fi mobility data. 𝑂 (0) Markov
predictors are used, that is, this model simply returns the most frequently seen locations from
historical trajectories. [25] applies the Hidden Markov Model (HMM) to predict the human mobility
trajectory, with self-adaptive parameters that change according to the objects’ moving speed. A
multilevel Markov-based approach to predict the future location of people, the effectiveness of
which is verified by geotagged tweets data. A hybrid Markov-based model is proposed in [26]
to predict the next location, which considers the spatio-temporal similarity of human mobility
patterns. [31] propose a hidden Markov model to extract travellers’ activity patterns.

1https://www.safegraph.com/academics
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2.3 Deep-learning based methods
In this section, we introduce the deep learning models that are used before the emergence of graph
neural networks. These models have proven their ability to capture human mobility patterns. They
also serve as the components of the graph neural networks to be covered in the next subsection.
RNN. Recurrent neural networks (RNN) have emerged as a powerful computational model

capable of capturing temporal dependencies in sequential data, making them well-suited for
forecasting human mobility patterns. Long short-term memory (LSTM) and gated recurrent unit
(GRU) are widely used recurrent units. [23] proposes a two-layer LSTM network to predict traffic
flow. In [10], multiple GRUs are stacked to capture long-range dependencies in mobility trajectories.
[10] incorporates a learnable user embedding into the LSTM to consider users preferences while
predicting human mobility.
CNN. Convolutional neural network (CNN) has been applied to a variety of applications such

as image classification, etc. It is mainly used to capture the spatial correlations within different
locations. Limited by the convolution operator, it can only be used for grid-distributed data. [44]
divides the geolocations as grids so that CNN can be used to capture the spatial patterns for mobility
prediction. [11] embeds the human trajectories into feature matrices, where the CNN can be used.
Despite the limitation, several variants of CNN have been applied to human mobility prediction. A
variant of CNN, Gated Temporal Convolutional Networks (Gated TCN) [2] is used to capture the
temporal pattern. Gated TCN is a deep learning architecture that has been proposed for modeling
sequential data with long-term dependencies. The model is based on the idea of dilated convolutions,
which enables the network to effectively capture both short-term and long-term patterns in the
data.
Attention. Attention mechanisms have become a popular technique in machine learning and

natural language processing (NLP) in recent years. Attention mechanisms allow neural networks
to selectively focus on parts of the input data that are most relevant to the task at hand. This
selective focus is achieved by assigning weights to different parts of the input data, which are
then used to compute a weighted sum of the input data. [10] combines the attention mechnism
with recurrent networks for mobility prediction, where historical trajectories are handled by the
attention mechanism to extract mobility patterns, and a GRU handles current trajectories. [12]
proposes a variational attention model to predict humanmobility. The variational encoding captures
latent features of recent mobility, followed by an attention mechanism to learn the attention on the
historical latent features. [9] proposes a decentralized attention-based human mobility prediction
method, allowing more efficient training for personalized prediction. Those attention mechanisms
only use the historical mobility data to predict its future values, and thus are also called self-
attentions.

2.4 Graph Neural Networks
With the rapid development of deep learning, graph neural networks (GNN) have emerged as a
powerful tool in modeling spatial and temporal patterns in human mobility. In this newly emerged
domain, spatial-temporal graph neural network has shown its effectiveness in this task, and becomes
the state-of-the-art genre of this method. We summarize those methods in Table 1. As most works
explicitly split their models as spatial and temporal components, we follow the same manner and
explain each component separately.
For the spatial components, most studies adopt the Graph Convolutional Network (GCN) [1, 4,

7, 13, 14, 20, 21, 35, 37, 39, 41, 42], which is a powerful framework for analyzing and processing
graph-structured data. While CNN excels in grid-like data such as images, GCNs offer a specialized
approach to capture and model complex relationships within graph data. GCNs leverage the
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connectivity patterns of nodes in a graph to propagate information and extract meaningful features.
By employing localized and adaptive filters, GCNs can effectively capture both local and global
structural information from the graph. This makes GCNs well-suited for human mobility prediction.
From Table 1, we can see that many studies combine GCN with self-attention to capture the spatial
patterns [7, 14, 20, 35, 42]. When integrating self-attention mechanisms into GCNs for capturing
spatial patterns in humanmobility prediction, a common approach is to employ the Graph Attention
Network (GAT) architecture [32]. In the GAT model, attention mechanisms are incorporated to
assign importance weights to different nodes in the graph based on their relevance to the prediction
task. This is achieved by computing attention scores that reflect the importance of each region’s
neighbourhood in relation to the central region. The attention scores are then used to weigh the
feature representations of neighbouring regions during prediction.

For the temporal components, the most used method is the Gated TCN [4, 13, 20, 21, 37, 41]. By
leveraging dilated convolutions and gate mechanisms, Gated TCNs can effectively capture both
short-term and long-term temporal patterns in human mobility data. The dilated convolutions
allow the network to process a wide range of temporal contexts, while the gate mechanisms enable
the network to focus on relevant temporal features and disregard noise or irrelevant information.
Similar to the spatial components, self-attention can also be incorporated into Gated TCN to capture
the temporal mobility pattern [13, 20]. By applying self-attention after the temporal convolutions in
the Gated TCN, the attention mechanism assigns attention weights to different temporal features,
allowing the model to focus on relevant information and capture intricate temporal patterns. The
attention weights are calculated based on the relationships between different time steps, enabling
the model to assign higher weights to important time steps.

Table 1. GNN-based methods for human mobility prediction.

Model Spatial Component Temporal Component

STGCN [41] GCN Gated TCN
MepoGNN [4] GCN Gated TCN
SAB-GNN [39] GCN LSTM
AGCRN [1] GCN GRU
STFGNN [21] GCN Gated TCN
HGCN [13] GCN self attention + Gated TCN

Graph WaveNet [37] GCN Gated TCN
HGARN [29] self-attention self-attention + LSTM
GCDAN [7] self attention + GCN self-attention
STAR [42] self-attention + GCN self-attention

CausalGNN [35] self-attention + GCN RNN
DSTAGNN [20] self-attention + GCN self-attention + Gated TCN
ASTGCN [14] self-attention + GCN self-attention

This paper self-, cross-, and context-aware
attention + GCN

self- and cross-attention
+ TCN

2.5 Contributions of this paper
Those methods, however, have two main drawbacks:

• Lack of interpretability. Existingmodelingmethods, such as attention-based GNNs, prioritize
prediction accuracy and lack interpretability. However, an interpretable model is crucial in
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understanding the relationship between COVID-19 and mobility patterns while also making
accurate predictions.

• Lack of contextual features. Most previous studies on modeling human mobility patterns
during COVID-19 are autoregressive, in the sense that they only use historical mobility data
to predict the future. These studies have neglected to incorporate contextual features, such
as information about regional population and income, which may hold valuable insights
that affect mobility patterns during the pandemic. However, as these static context features
remain constant over time, integrating them into dynamic mobility data poses a non-trivial
challenge. In an effort to address this problem, [44] concatenates the static context with the
dynamic traffic feature and feeds the concatenated vector directly into the model. However,
as the static context remains unchanged over time, this simple concatenation method can
hinder the training process, because the model must learn to distinguish between the
dynamic and static features.

Our proposed CCAAT-GCN integrates spatial and temporal information into a graph-based
framework that captures the complex interdependencies between different regions and periods.
Specifically, it uses the cross-attention mechanism to model the mutual influence between the
COVID-19 pandemic and human mobility, where the calculated cross-attention scores serve to
interpret this mutual influence. Additionally, we use the context-aware attention mechanism to
better incorporate static information, such as regional income, population, and points of interest
(POI) in predicting the mobility dynamic patterns. Furthermore, we ensemble multiple adjacency
matrices together to better capture the spatial patterns. Those adjacency matrices include both
the static ones that are calculated based on distance or inter-nodal correlations, together with the
adaptive ones that are learned by our proposed model. We evaluate our approach on a large-scale
mobility dataset, the SafeGraph dataset, during the COVID-19 pandemic.

The main contributions can be summarized as follows:

(1) We introduce a novel framework of CCAAT-GCN for mobility prediction considering
COVID-19 impact, and use a real-world dataset for validation.

(2) We propose to use cross-attention mechanism to enhance model interpretability by explicitly
modeling the mutual influence between COVID-19 and human mobility. Learning the
interaction between these two critical factors can provide interpretable insights into the
relationships between COVID-19 dynamics and mobility patterns, enabling a more nuanced
understanding of the mutual interaction between public health and mobility movement.
(highlight that we can not only interpret, but learn the correlation; w.r.t our Fig. 7(a).)

(3) We further increase the model interpretability by using the context-aware attention mech-
anism. By attending to relevant contextual information, such as regional population and
income, it enables a better representation of the underlying social and economic factors
that influence human mobility.

3 PROBLEM STATEMENT
In this section, we formally formulate the problem of predicting human mobility considering the
COVID-19 pandemic. Before that, we first define the preliminaries.
Traffic Networks. We define the traffic network as an undirected graph 𝐺 = (𝑉 , 𝐸,𝐴). 𝑉 =

{𝑣𝑖 }𝑁𝑖=1 represents the set of nodes, where 𝑁 = |𝑉 | as the number of nodes; 𝐸 represents the set of
edges; 𝐴 ∈ R𝑁×𝑁 denotes the adjacency, which is a square matrix that describes the relationships
between the nodes in the graph. In 𝐴, each row and column correspond to a node in the graph, and
the entries 𝐴𝑖 𝑗 in the matrix indicate the presence or absence of edges between the nodes.
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Dynamic and Contextual Features. We use x𝑖𝑡 ∈ R𝐹 to denote the dynamic feature, i.e.,
features changing according to time, where 𝑖 ∈ {1, · · ·𝑁 } and 𝐹 is the length of the feature. The
dynamic feature used in this paper includes the COVID-19 case rates and regional number of
visits. Apart from the dynamic features, each node also has static features that do not change over
time. Although constant, those static features can serve as the context for model prediction. To
distinguish between the dynamic and static features, in the remainder of this paper, we use feature
to stand for the dynamic feature, and context to account for the static feature. We use c𝑖 ∈ R𝐶 to
denote the context, where 𝑖 ∈ {1, · · · , 𝑁 } and 𝐶 is the length of the context vector for each node.
The context used in this paper includes regional population, average income, and points of interest
(POI). After defining the feature and context for each node, we use X𝑡 = (x1

𝑡 , x
2
𝑡 , · · · , x𝑁𝑡 )𝑇 ∈ R𝑁×𝐹

to denote the values of all nodal features at time 𝑡 , where𝑇 stands for the vector transpose to make
it a column vector, and C = (c1, c2, · · · , c𝑁 )𝑇 to denote the all the nodal context.

Problem. With all preliminaries introduced above, we are ready to define the problem of predict-
ing human mobility, i.e., the future regional number of visits. Given the historical nodal feature of
previous 𝜏 time window, X(𝑡−𝜏+1) :𝑡 = [X𝑡−𝜏+1, · · · ,X𝑡 ], and the nodal context 𝐶 , we aim to learn a
function 𝑓 to predict the future 𝜏 ′-length mobility sequence Y(𝑡+1) :(𝑡+𝜏 ′ ) = [Y𝑡+1, · · · ,Y(𝑡+1) :(𝑡+𝜏 ′ ) ].

[X(𝑡−𝜏+1) :𝑡 ;C]
𝑓
→ Y(𝑡+1) :(𝑡+𝜏 ′ ) , (1)

where Yt = (𝑦1
𝑡 , · · ·𝑦𝑁𝑡 ) stands for all the nodal numbers of visits; 𝑦𝑖𝑡 ∈ R is the number of visit of

node 𝑖 at time 𝑡 , with 𝑖 ∈ {1, · · · , 𝑁 }. To better distinguish between the mobility and the COVID-19
case rates, we use X𝑚𝑜𝑏𝑡 and X𝑐𝑜𝑣𝑡 to represent the mobility and COVID-19 case rates, respectively,
where X𝑚𝑜𝑏𝑡 and X𝑐𝑜𝑣𝑡 ∈ R𝑁×1, and X𝑡 = [X𝑚𝑜𝑏𝑡 ;X𝑐𝑜𝑣𝑡 ]. Thus, Eq. 2 can be revised as:

[X𝑚𝑜𝑏(𝑡−𝜏+1) :𝑡 ;X
𝑐𝑜𝑣
(𝑡−𝜏+1) :𝑡 ;C]

𝑓
→ [X𝑚𝑜𝑏(𝑡+1) :(𝑡+𝜏 ′ ) ], (2)

where X𝑚𝑜𝑏(𝑡−𝜏+1) :𝑡 and X𝑐𝑜𝑣(𝑡−𝜏+1) :𝑡 ∈ R
𝑁×𝜏 .

4 METHODOLOGY
4.1 Overview of CCAAT-GCN
The framework of CCAAT-GCN is shown in Fig. 1. Now we will introduce the overview of this
framework from top to bottom and from left to right. In the upper left, the contextual features
include POI, income, and population of each ZIP code region, forming a contextual feature graph
that does not change through time. The contextual feature graph is then fed into the context-aware
attention component in the spatial-temporal block (ST Block). In the middle, the dynamic features
include weekly confirmed case rates and mobility data, each forming a spatial-temporal tensor.
These two dynamic features are fed into the cross-attention component (CrosAtt), which is followed
by a series of ST Blocks. Each ST Block consists of a temporal attention component (TAtt), a spatial
attention component (SAtt), a context-aware attention component (CtxtAtt), a GCN, and a temporal
convolutional layer (TConv). The ST Blocks are followed by a 1D-convolutional layer (Con1d)
for the final transformation, after which the future mobility data is predicted. At the bottom, the
Multigraph considers three different metrics and generates three different adjacency matrices. Then,
the averaged adjacent matrix is fed into the GCN of the ST Block to conduct K-order Chebyshev
polynomial approximation.

In the remainder of this section, we will first introduce the details of all the attention mechanisms
mentioned in Fig. 1. Then, we will introduce the details of the ST Blocks and the Multigraph. The
loss function will follow.
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Fig. 1. Framework of the proposed CCAAT-GCN.

4.2 Attention Module
We introduce the attention mechanisms in the order of appearance in Fig. 1, which is cross-attention,
temporal attention, context-aware attention and spatial attention.

4.2.1 Cross-Attention. Cross-attention (or cross-modal attention) mechanism [28] is a technique
used in deep learning models to capture the relationship between inputs from two different modes,
e.g., images and audios. It allows the model to learn how to selectively attend to different parts of
the inputs, which can be useful in tasks such as natural language processing, computer vision, and
speech recognition.

Mathematically, given the mobility feature X𝑚𝑜𝑏(𝑡−𝜏+1) :𝑡 and the confirmed COVID-19 cases feature
X𝑐𝑜𝑣(𝑡−𝜏+1) :𝑡 , we first calculate their embedding using the self-attention mechanisms as follows,

{ Z𝑚𝑜𝑏 = softmax
(
(Q𝑐𝑟X𝑚𝑜𝑏

(𝑡−𝜏+1) :𝑡 )
𝑇K𝑐𝑟X𝑚𝑜𝑏

(𝑡−𝜏+1) :𝑡√
𝑑

)
V𝑐𝑟X𝑚𝑜𝑏(𝑡−𝜏+1) :𝑡

Z𝑐𝑜𝑣 = softmax
(
(Q′

𝑐𝑟X𝑐𝑜𝑣
(𝑡−𝜏+1) :𝑡 )

𝑇K′
𝑐𝑟X𝑐𝑜𝑣

(𝑡−𝜏+1) :𝑡√
𝑑

)
V′
𝑐𝑟X𝑐𝑜𝑣(𝑡−𝜏+1) :𝑡

, (3)

where Q𝑐𝑟 , Q′
𝑐𝑟 , K𝑐𝑟 , K′

𝑐𝑟 , V𝑐𝑟 and V′
𝑐𝑟 are learnable matrice; softmax function normalizes the

similarity scores into a probability distribution over the keys; 𝑑 is the number of columns of
(X𝑚𝑜𝑏(𝑡−𝜏+1) :𝑡 )

𝑇 , which is the number of nodes 𝑁 . The encoded features are then used to calculate the
cross-attention: {

E𝑚𝑜𝑏→𝑐𝑜𝑣
𝑐𝑟 = softmax

(
(Z𝑚𝑜𝑏 )𝑇 Z𝑐𝑜𝑣√

𝑑

)
Z𝑐𝑜𝑣

E𝑐𝑜𝑣→𝑚𝑜𝑏𝑐𝑟 = softmax
(
(Z𝑐𝑜𝑣 )𝑇 Z𝑚𝑜𝑏

√
𝑑

)
Z𝑚𝑜𝑏

. (4)
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These two cross attentions are summed to get the final cross attention output: E𝑐𝑟 = E𝑚𝑜𝑏→𝑐𝑜𝑣
𝑐𝑟 +

E𝑐𝑜𝑣→𝑚𝑜𝑏𝑐𝑟 . In this way, the cross-attention mechanism allows a model to selectively attend to
different parts of the input and output sequences, depending on the context of the current query.
The final cross-attention output is then fed into the temporal attention component.

4.2.2 Temporal attention. We revise the framework of calculating temporal attention in [14] by
adding the learned cross-attention E𝑐𝑟 into the framework. The equation is shown below,{

E′𝑡 = (U1E𝑐𝑟 )𝑇U2U3E𝑐𝑟
E𝑡 = softmax

(
V𝑡 · 𝜎

(
E′𝑡 + b𝑡

) ) , (5)

where V𝑡 , b𝑡 , U1, U2, and U3 are learnable parameters; 𝜎 is the sigmoid function. The first step
in the calculation of the temporal attention involves transforming the cross-attention matrix
E𝑐𝑟 using learnable parameters U1, U2, and U3. This transformation, denoted as E′𝑡 , captures the
interdependencies among different temporal slices of the data. To obtain the final temporal attention
matrix E𝑡 , we calculate the dot product between the learnable parameter V𝑡 and the transformed
sum from the previous step. We then apply the softmax function to normalize the attention scores
across all temporal slices, ensuring that the weights sum up to one.

4.2.3 Context Attention. Context-attention mechanism [43] is a technique used in deep learning
models to improve the performance of natural language processing tasks, such as machine transla-
tion and text summarization. The attention mechanism allows the model to selectively focus on
specific parts of the input, while the context-attention mechanism takes into account the context
of the input in order to further improve the model’s attentional capacity. This mechanism assigns
different weights to different parts of the input based on their relevance to the context, allowing
the model to better capture the meaning of the input and produce more accurate predictions. For
example, in the task of machine translation, the context-attention mechanism can be used to weigh
different words in the source sentence according to their importance to the translation of the
target sentence. Overall, the context-attention mechanism is a powerful tool for improving the
accuracy and interpretability of deep learning models in natural language processing tasks. First,
the embedding of the contextual feature C is calculated as

Z𝑐𝑡 = MLP(C), (6)
where MLP is the multiple layer perceptron. Then context attention can be calculated as

E𝑐𝑡 = softmax
(
(Q𝑐𝑡E𝑡 )𝑇 K𝑐𝑡E𝑡Z𝑐𝑡√

𝑑

)
V𝑐𝑡Z𝑐𝑡 , (7)

where Q𝑐𝑡 , K𝑐𝑡 and V𝑐𝑡 are learnable matrices.

4.2.4 Spatial attention. We revise the framework of calculating temporal attention in [14] by
adding the learned context-aware attention E𝑐𝑡 into the framework. The equation is shown below,{

E′𝑠 = (M1E𝑡 )𝑇M2M3E𝑡 · E𝑐𝑡
E𝑠 = softmax

(
E𝑡 · E𝑐𝑡 · 𝜎

(
E′𝑠 + b𝑠

) ) , (8)

where M1, M2, M3, and b𝑠 are learnable parameters. We first transform the temporal attention
matrix E𝑡 using the learnable parameters M1, M2, and M3. This transformation, denoted as E𝑠′,
captures the spatial dependencies between different locations at the same temporal slice, while
considering the contextual information E𝑐𝑡 . Next, we apply a sigmoid activation function 𝜎 to
the sum of E′𝑠 and a bias term b𝑠 . This step enhances the discriminative power of the attention
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mechanism by assigning importance weights to different spatial features based on their relevance
to the prediction task. To obtain the final spatial attention matrix E𝑠 , we calculate the element-wise
product between the temporal attention matrix E𝑡 , the contextual attention E𝑐𝑡 , and the transformed
sum from the previous step. We then apply the softmax function to normalize the attention scores.

In contrast to conventional methods of calculating spatial attention, we incorporate both cross-
attention E𝑐𝑟 (previously utilized for calculating E𝑡 ) and context-aware attention E𝑐𝑡 . In our exper-
iments, we will demonstrate how this integration of cross- and context-aware attention aids in
learning an interpretable attention matrix.

4.3 Multigraph Module
The complex spatial features of humanmobility cannot be captured completely by relying on a single
graph, thus we propose a multi-graph mechanism. This subsection defines the adjacency matrix
to characterize the spatial-temporal relationship of human mobility from multiple perspectives,
including inter-regional distance and correlation.

4.3.1 Distance-based graph. We use the inter-nodal distance to compute the adjacency matrix of
the distance of the distance-based graph [41]. The equation is depicted as follows,

(𝐴𝐷𝐼𝑆 )𝑖 𝑗 =


exp
(
−𝑑

2
𝑖 𝑗

𝜎2

)
, 𝑖 ≠ 𝑗 and exp

(
−𝑑

2
𝑖 𝑗

𝜎2

)
≥ 𝜖

0, otherwise
, (9)

where 𝑑𝑖 𝑗 is the distance between regions 𝑖 and 𝑗 ; 𝜎2 and 𝜖 are thresholds to control the distribution
and sparsity of matrix 𝐴𝐷𝐼𝑆 . We use the centroids of the regions to calculate their distance.

4.3.2 Correlation-based graph. We use Pearson correlation coefficient [44] between time series
mobility data of a node pair to calculate the nodal correlation. We use 𝐴𝐶𝑂𝑅 to denote the adjacent
matrix of the correlation-based graph, which is depicted as

(𝐴𝐶𝑂𝑅)𝑖 𝑗 =
∑𝑇
𝑡=1 (x𝑖𝑡 − x̄𝑖 ) (x𝑗𝑡 − x̄𝑗 )√︃∑𝑇

𝑡=1 (x𝑖𝑡 − x̄𝑖 )2
√︃∑𝑇

𝑡=1 (x
𝑗
𝑡 − x̄𝑗 )2

, (10)

where x𝑖𝑡 represents the nodal feature of region 𝑖 at time 𝑡 ; 𝑇 is the historical time interval.

4.3.3 Dynamic-time-warping based graph. Dynamic Time Warping (DTW) is an algorithm for
comparing and aligning time series data [21]. It measures the similarity between two sequences
by finding the optimal alignment that minimizes the total distance between corresponding points.
The algorithm calculates a distance matrix using the Euclidean or other distance measure and then
applies dynamic programming to find the optimal alignment path.

By computing the DTW between each node’s temporal sequences in mobility data, we can obtain
a graph that represents temporal correlations. The DTW-based adjacency matrix, denoted as𝐴𝐷𝑇𝑊 ,
is calculated as

(𝐴𝐷𝑇𝑊 )𝑖 𝑗 = 𝑑𝑖 𝑗 + min{(𝐴𝐷𝑇𝑊 )𝑖−1, 𝑗 , (𝐴𝐷𝑇𝑊 )𝑖, 𝑗−1, (𝐴𝐷𝑇𝑊 )𝑖−1, 𝑗−1}, (11)

where each entry of the adjacent matrix represents the accumulated distance at position (𝑖, 𝑗); the
minimum value among the three neighbouring regions is used to update the matrix.

Finally, the adjacency matrix of the Multigraph, denoted as 𝐴𝑀𝑈𝐿 , is calculated by averaging the
above-mentioned adjacency matrices 𝐴𝑀𝑈𝐿 = (𝐴𝐷𝐼𝑆 +𝐴𝐶𝑂𝑅 +𝐴𝐷𝑇𝑊 )/3
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4.4 Graph Convolutional Network
We follow [41] to conduct convolution along the graph. Given the adjacency matrix of the
Multigraph 𝐴𝑀𝑈𝐿 , we define the normalized Laplacian matrix of the Multigraph as 𝐿 = 𝐼 −
𝐷−1/2𝐴𝑀𝑈𝐿𝐷

−1/2 ∈ R𝑁×𝑁 , where 𝐼 is a unit matrix and 𝐷 is a diagonal degree matrix with
𝐷𝑖𝑖 =

∑
𝑗 (𝐴𝑀𝑈𝐿)𝑖 𝑗 . We use the K-order Chebyshev polynomials to approximate the graph convolu-

tion operator ∗𝐺 as follows:

𝑔𝜃 ∗𝐺 𝑥 = 𝑔𝜃 (𝐿)𝑥 =

𝐾−1∑︁
𝑘=0

𝜃𝑘

(
𝑇𝑘 (𝐿̃) ⊙ E𝑠

)
𝑥, (12)

where the parameter 𝜃 ∈ R𝐾 is the polynomial coefficients vector; E𝑠 is the spatial attention matrix;
⊙ is the Hadamard product; 𝐿̃ = 2

𝜆max
𝐿−𝐼 , with 𝜆max being the maximum eigenvalue of the Laplacian

matrix. The recursive definition of the Chebyshev polynomial is 𝑇𝑘 (𝑥) = 2𝑥𝑇𝑘−1 (𝑥) − 𝑇𝑘−2 (𝑥),
where 𝑇0 (𝑥) = 1 and 𝑇1 (𝑥) = 𝑥 . Using the K-order Chebyshev polynomials approximation, each
node is updated by the information of the K neighbouring nodes.

Once the graph convolution operations have successfully captured the information from neigh-
bouring nodes in the spatial dimension, we further enhance the node’s signal by stacking a standard
convolution layer in the temporal dimension. This step allows us to merge the information obtained
from neighbouring time slices and update the node’s signal accordingly. A final 1×D convolution
with a non-linearity neural network is involved to get the final prediction X̂𝑚𝑜𝑏(𝑡−𝜏+1) :𝑡 . We use the
mean squared error (MSE) as our loss function:

L =
| |X𝑚𝑜𝑏(𝑡−𝜏+1) :𝑡 − X̂𝑚𝑜𝑏(𝑡−𝜏+1) :𝑡 | |

2

𝑁𝜏
, (13)

where | | · | |2 is the L2 norm.

5 DATA
To model human mobility during the COVID-19 pandemic, we utilize the SafeGraph dataset, which
collects location data from mobile devices through apps installed on users’ phones. SafeGraph data
provides detailed information on the movement of people between different locations, including
residential, commercial, and recreational areas. The dataset covers a large geographical area and is
available at a high spatial and temporal resolution.

We aggregate the SafeGraph data into a weekly time frame, as it provides a good balance between
granularity and data availability. The weekly resolution also aligns well with the weekly reporting
frequency of the COVID-19 case data. We preprocess the SafeGraph data to extract the relevant
features, including the number of visitors, duration of visits, and distance traveled between different
locations.
Our original data has collected the weekly number of visits and other common features in 172

regions of New York from 2020/08/10-2022/04/18. We use the z-score method to normalize the
feature number of visits and take the normalized data as the model input.
In addition to the SafeGraph data, we also utilize COVID-19 case data from the Centers for

Disease Control and Prevention (CDC) to study the impact of the pandemic on human mobility. The
CDC data provides weekly counts of COVID-19 cases, hospitalizations, and deaths across different
regions in the United States. We combine the CDC data with the SafeGraph data to investigate the
relationship between human mobility patterns and COVID-19 outbreaks. The contextual features,
including income, population, and POI are from New York City open data.
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Table 2. Summary of datasets

SafeGraph

# of ZIP code 172
# of Weeks 90
Time Span 2020/08/10 - 2022/04/18

Point of Interest (POI)
# of POIs 18,912

Types of POIs

residential(16.%), education(20%), culture(3%),
transportation(6.1%), social services(8.7%),
recreational(17.2%), commercial(5.5%), gov-
ernment(4.5%), religious institution(8.4%),
water(1.6%), public safety(3.3%), health ser-
vices(1.5%), miscellaneous(3.5%)

Median Household Annual Income (unit: Dollars per year)
Range [31,536, 243,571]

ZIP Code Population
Range [1,783, 111,344]

6 EXPERIMENT RESULTS
In this section, we first introduce our experiment setting, including baselines and evaluation metrics.
Then we will present the results with our proposed model versus baselines using the real-world
dataset mentioned in Sec. 5.

Baselines and Evaluation Metrics. We compare our model with the following baselines.

• ASTGCN. The Attention-based Spatial-temporal Graph Convolutional Network (ASTGCN)
is a powerful deep learning model designed to capture both spatial and temporal dependen-
cies in graph-structured data.

• STGCN. The Spatial-temporal Graph Convolutional Network (STGCN) model is composed
of several spatial-temporal convolutional blocks and one fully-connected output layer. In
each spatial-temporal convolutional block, there are two gated sequential convolution layers
for capturing temporal dependency and one spatial graph convolution layer in between for
capturing spatial dependency and this is like the “sandwich” structure.

• GraphWaveNet. GraphWaveNet is a graph convolutional neural network (GCN)-based
model for graph classification tasks that utilize a WaveNet architecture for encoding graph
signals. It operates on the graph in the spectral domain, using a variant of the graph Fourier
transform to transform node features into a graph spectral domain representation.

• STFGCN. The Spatial-temporal Fusion Graph Convolutional Network (STFGCN) is a deep
learning model designed specifically to capture spatial and temporal patterns in graph-
structured data. STFGCN combines the power of graph convolutions and temporal fusion
techniques to effectively model and predict the numbe of visits.

• LSTM. A vanilla temporal LSTM.
• Historical Average (HA). The historical average numbers of visits are used as the prediction
of the corresponding future number of visits.

• Autogressive (AR). The standard autoregression model.
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The mean absolute error (MAE), the root mean squared error (RMSE), and the relative error (RE)
are used to measure the performance of models.
Experiment Settings. The first 50 weeks of data are selected as the training set, the next and

last 20 weeks of data are selected as the validation and test sets, respectively. The historical time
window size 𝜏 = 4. The learning rate is 0.0001. Batchsize is set to 16. We use 0.1 dropout rate in the
attention layer. The number of filters in the 1D-convolutional layer is 16.

6.1 Performance Comparison
The results comparison is shown in Table. 3. We focus on predicting the number of visits for 1, 2,
and 3 weeks ahead. Multiple prediction horizons are considered to evaluate the model ability to
capture short- and long-term patterns accurately.
Our CCAAT-GCN model outperformed the baselines across all prediction horizons, achieving

the lowest RMSE and MAE values. This indicates that CCAAT-GCN effectively captured the
complex spatiotemporal dynamics inherent in human mobility data. The incorporation of attention
mechanisms and graph convolutional operations in CCAAT-GCN enabled it to effectively leverage
both spatial and temporal information, resulting in improved prediction accuracy.

Comparing CCAAT-GCN to the other baselines, we observed that HA and AR, which rely solely
on historical averages or autoregressive models, demonstrated relatively poor performance. LSTM,
a popular recurrent neural network, showed competitive results but was outperformed by CCAAT-
GCN. STGCN, STFGCN, Graph WaveNet, and ASTGCN, which incorporate spatial and temporal
dependencies, achieved comparable performance, but CCAAT-GCN consistently exhibited superior
accuracy.
The results emphasize the effectiveness of our proposed CCAAT-GCN model in capturing

and predicting human mobility patterns. The combination of attention mechanisms and graph
convolutional operations within CCAAT-GCN enables comprehensive modeling of the spatial and
temporal aspects of the data, leading to more accurate and reliable predictions.

Table 3. Evaluation of different models using real-world mobility data (SafeGraph)

Method 1 week ahead 2 weeks ahead 3 weeks ahead

RMSE MAE RMSE MAE RMSE MAE

HA 0.25 0.19 0.86 0.48 0.65 0.33
AR 0.40 0.16 0.36 0.15 0.38 0.16
LSTM 0.34 0.17 0.36 0.17 0.42 0.19
STGCN 1.26 0.91 1.27 0.91 1.26 0.92
STFGCN 0.55 0.23 0.56 0.24 0.57 0.24
Graph WaveNet 0.28 0.10 0.31 0.11 0.32 0.12
ASTGCN 0.17 0.09 0.20 0.11 0.24 0.13

CCAAT-GCN 0.13 0.06 0.13 0.06 0.17 0.07

6.2 Convergence Analysis
The convergence analysis of our proposed model is presented in Fig. 2, which illustrates the
training and validation errors as a function of the training iterations. It can be observed that both
curves exhibit a gradual decrease in error over time, indicating the model’s learning progress. After
approximately 3000 epochs, the training and validation errors reach a convergence point, suggesting
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Fig. 2. Training and validation error.

that themodel has effectively learned the underlying patterns in the data. This convergence indicates
that further training iterations may not significantly improve the model’s performance or reduce
the error rate. The convergence of the training and validation errors signifies the stability and
reliability of our model.

6.3 Ablation Study
To investigate the effectiveness of various components in CCAAT-GCN, Fig. 3 presents the results of
ablation studies. We evaluate the performance of our proposed CCAAT-GCN model by comparing
it with three variations that remove specific components from CCAAT-GCN. These variations
include CCAAT-GCN without cross-attention, CCAAT-GCN without context-aware attention, and
CCAAT-GCN without both components. The results of the ablation study reveal that our complete
CCAAT-GCNmodel outperformed all the variants in terms of prediction accuracy. When comparing
the performance of CCAAT-GCN without cross-attention and CCAAT-GCN without context-aware
attention, it is observed that the removal of either component resulted in decreased prediction
accuracy. This indicates that both cross-attention and context-aware attention contribute to the
model’s ability to capture and leverage important information for accurate predictions. This result
confirms the importance of the cross-attention and context-aware attention mechanisms in our
CCAAT-GCN model. The integration of these components allows the model to effectively capture
and leverage relevant information from both spatial and temporal contexts, leading to improved
prediction accuracy in human mobility prediction.

6.4 Visualization
Fig. 4 provides a heatmap visualization of the relative errors across different ZIP code areas on
the map of New York City. The relative error displayed in the heatmap represents the overall
relative error for the 3-week-ahead prediction. The results reveal that our CCAAT-GCN model
exhibits the best performance among the compared models, demonstrating the lowest overall
relative error across various ZIP codes. This indicates that CCAAT-GCN successfully captures the
complex spatiotemporal patterns in the human mobility data, resulting in accurate predictions
across different regions of New York City. In contrast, the HA model generally exhibits relatively
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Fig. 3. The result of the ablation study.

higher relative error. This is likely due to the simplistic approach of calculating the historical
average, which may not be suitable for long-term predictions with non-stationary data. The HA
model’s limitations in capturing the dynamics of the human mobility patterns could explain its
higher relative error compared to the other models. While STFGCN generally performs well, there
are specific regions where its performance is suboptimal. This could be attributed to its inability
to handle corner cases effectively, resulting in less accurate predictions in those particular areas.
It is worth noting that all models struggle to achieve satisfactory performance in some common
areas, such as the right-bottom corner of Staten Island. This can be attributed to the use of relative
error as the evaluation metric, which amplifies the impact of high relative error in regions with low
visitation frequency. In areas with a limited number of visits, even a slight deviation in predictions
can result in a relatively high relative error, affecting the overall performance of the models.
Fig. 5 presents a bar chart depicting the comparison between the predicted and ground-truth

number of visits in different ZIP code areas. The x-axis represents the ZIP codes, while the y-
axis represents the number of visits. The comparison is focused on our proposed CCAAT-GCN
model. The bar chart demonstrates that our CCAAT-GCN model achieves favorable results overall,
accurately predicting the number of visits in various ZIP code areas. This indicates the model’s
ability to capture and learn the underlying patterns of human mobility, allowing it to provide
reliable predictions even in areas with a large-scale number of visits. Furthermore, this figure helps
explain the previous observation of high relative errors in specific areas. It becomes evident that
the areas with high relative errors correspond to those with very low numbers of visits. In such
regions, even a slight discrepancy between the predicted and ground-truth values can lead to a
significantly high relative error, given the small denominator. This emphasizes the challenge of
accurately predicting human mobility patterns in areas with sparse or limited visits. The bar chart
highlights the effectiveness of our CCAAT-GCN model in capturing the nuances of human mobility
across different ZIP code areas, including those with varying scales of visitation. The model’s ability
to provide reliable predictions even in areas with a high number of visits contributes to its overall
performance and reinforces its suitability for human mobility prediction tasks.
Fig. 6 provides a visual representation of the time-series number of visits spanning 90 weeks,

along with the predicted number of visits for the last 20 weeks, for two selected ZIP code areas.
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(a) CCAAT-GCN (b) STFGCN

(c) LSTM (d) HA

Fig. 4. Relative errors for each ZIP code.

The solid and dashed lines represent the observed and predicted number of visits, respectively.
The figure demonstrates a good agreement between the predicted and observed number of visits,
even in scenarios where the patterns of the number of visits exhibit non-stationary behavior. This
is particularly evident during the transition from the first 50 weeks to the final 20 weeks, where
the number of visits displays varying patterns. The ability of our model to accurately predict
non-stationary patterns can be attributed to the utilization of cross- and context-aware attention
mechanisms. These mechanisms leverage information from multiple sources, including COVID-19
case rates and contextual features, to enhance the training process and account for distribution
shifts. By incorporating these attention mechanisms, our model effectively captures the evolving
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Fig. 5. Prediction results of CCAAT-GCN

Fig. 6. Predicted number of visits.

dynamics of human mobility, enabling accurate predictions even in the presence of changing
patterns.

Fig. 7(a) illustrates a heatmap depicting the attention matrix acquired from the spatial-attention
within our CCAAT-GCN model. The x-axis and y-axis represent different ZIP codes. We can see
that certain ZIP codes along the y-axis exhibit notably high attention scores across a majority
of ZIP codes along the x-axis. This observation indicates that these specific areas play a critical
role in affecting mobility patterns throughout the entire region. This heatmap provides insights
into the importance of certain areas in relation to their COVID-19 case rates when predicting the
number of visits in other areas. To better interpret the attention scores, we aggregate them along
the x-axis and plot them on the map. For comparative analysis, we also plot the 50-week aggregated
COVID-19 case rates in Fig. 7(b). Two notable observations are made when comparing these two
heatmaps.

(1) In Fig. 7(b), Staten Island, situated in the bottom left corner, exhibits relatively high COVID-
19 case rates. However, in Fig. 7(a), this region displays low spatial-attention scores. This
discrepancy can be attributed to the island’s geographical isolation from other areas. That

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

111:18 Mo et al.

(a) Left: average attention matrix learned in CCAT-GCN. Middle: aggregated attention scores in each ZIP code
by row; the sum of the attention score represents the influence of a specific ZIP code on others. Right: geospatial
visualization of the aggregated attention scores on the map.

(b) Average weekly COVID-19 case rates

Fig. 7. Visualization of the average attention matrix (a) versus average weekly COVID-19 case rates (b), both
calculated using data from 2020/08/10 to 07/26/2021.

is to say, despite its high case rates, the impact of COVID-19 case rates in Staten Island
on mobility patterns in other regions of New York City is limited. This finding also under-
scores the capability of the cross- and context-aware-attention mechanism to discover the
underlying impact of COVID-19 on mobility, rather than solely relying on the magnitudes
of case rates.

(2) The region with the highest attention score in Fig. 7(a), located in the King County of
Brooklyn, exhibits a relatively low COVID-19 case rate in Fig. 7(b). After investigating the
POI of this region, we find that the Kings County Hospital Center is located here together
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with several other healthcare facilities. This observation suggests that, despite its lower
case rates, the region encompassing Kings County Hospital Center plays an important role
in influencing mobility patterns in other areas, owing to its concentration of healthcare
facilities. Moreover, this observation serves as evidence of the cross- and context-aware
attention mechanism’s ability to identify crucial areas even in the absence of high COVID-19
case rates.

7 CONCLUSION
We developed a model CCAAT-GCN (Cross- and Context-Aware Attention based Spatial-Temporal
Graph Convolutional Network) for human mobility prediction, especially during disruptive events
like COVID-19. In the past two years during the COVID-19 pandemic, people’s mobility patterns
have gone through several waves, aligned with the waves of COVID evolution. How do we predict
a nonstationary spatiotemporal pattern using deep learning models? To tackle such a challenge,
here we include the COVID case number to capture such nonstationarity. Building upon the
GCN framework, the cross-attention module specifically models the correlation between COVID-
19 cases and the number of visits, allowing for a comprehensive understanding of their mutual
influence. Moreover, the context-attentionmodule learns to incorporate relevant contextual features,
such as regional demographics or socioeconomic factors, to enhance the prediction accuracy and
interpretability of the model.
The proposed model was validated using SafeGraph data in New York City from August 2020

to April 2022. A comprehensive list of baseline models were performed, ranging from various
spatiotemporal GCN models to time-series models. Ablation study confirms the importance of
the cross-attention and context-aware attention mechanisms in our CCAAT-GCN model. The
integration of these components allows the model to effectively capture and leverage relevant
information from both spatial and temporal contexts, leading to improved prediction accuracy in
human mobility prediction.

We plan to extend this work in the following aspects: (1) validate it using different datasets across
various disruptive disasters and events, like hurricanes and big events, which could transform
human mobility patterns. (2) learn the invariant structure underlying the spatiotemporal mobility
patterns for generalization and transfer learning.
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