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Abstract

Spatiotemporal prediction over graphs is challenging because real-
world data suffers from the Out-of-Distribution (OOD) generalization
problem, where the test data comes from a different distribution with
regard to the training one. To address this issue, Invariant Risk Mini-
mization (IRM) has emerged as a promising approach for learning invari-
ant representations across different environments. However, IRM tends
to degenerate to Empirical Risk Minimization (ERM) when applied to
deep learning models due to overfitting. To avoid such a degeneration,
we propose a diffusion-aumented invariant risk minimization (diffIRM)
framework, that integrates the diffusion model into the IRM framework.
Specifically, diffIRM augments the spatiotemporal graph data (such as
human mobility) using a conditional diffusion model, which takes in con-
ditions (such as COVID-19 case rates and demographic features) and gen-
erates diverse training environments. Then, the augmented spatiotempo-
ral graph data is used to train Graph Neural Networks with the penalty
of IRM. Theoretical proof is provided that the training environments gen-
erated by the diffusion model can guarantee the performance of IRM.
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1 Model Structure

Figure 1: Model architecture of diffIRM

Fig. 1 provides an overview of our proposed methodology. We have intro-
duced a method inspired by Denoising Diffusion Probabilistic Models[1] to con-
struct a diffusion model capable of generating Urban Spatial-Temporal Data.
As city ST data is graph based, and is already diffused (adding noise) to a
Gaussian Noise by the forward diffusion process, we employed a Residual Gated
Graph ConvNets[2] to denoise and reconstruct city ST data.

The diffusion model is pre-trained by minimizing the reconstruction error
(MSE, KL divergence, ...) using the training dataset. Subsequently, this trained
diffusion model is supplied with the original Spatial-Temporal (ST) graph data
denoted as X and a set of nc intervened conditions denoted as C(k)nc

k=1, resulting
in the generation of nc augmented environments. Both the original data within
the initial environments and the augmented data are utilized as inputs for a ST
prediction Graph Neural Network (GNN)[3].

Within this framework, the original data is employed to calculate two types
of losses: the empirical loss (Lemp) and the Invariant Risk Minimization (IRM)
loss (Lirm). Simultaneously, the augmented data contributes to the calculation
of the augmented loss (Laug).
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2 Experiment Results

Figure 2: Evaluation of different models using real-world mobility data

(a) ERM, 33.3% (b) IRM, 25.5% (c) diffIRM, 11.8%

Figure 3: MAPE heatmaps and overall MAPEs of different models for the
Safegraph data.
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(a) MAE (b) RMSE

Figure 4: Ablation study of ST prediction GNN categories.
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